Small conductance calcium-activated potassium current is important in transmural repolarization of failing human ventricles.
نویسندگان
چکیده
BACKGROUND The transmural distribution of apamin-sensitive small conductance Ca(2+)-activated K(+) (SK) current (IKAS) in failing human ventricles remains unclear. METHODS AND RESULTS We optically mapped left ventricular wedge preparations from 12 failing native hearts and 2 rejected cardiac allografts explanted during transplant surgery. We determined transmural action potential duration (APD) before and after 100 nmol/L apamin administration in all wedges and after sequential administration of apamin, chromanol, and E4031 in 4 wedges. Apamin prolonged APD from 363 ms (95% confidence interval [CI], 341-385) to 409 (95% CI, 385-434; P<0.001) in all hearts, and reduced the transmural conduction velocity from 36 cm/s (95% CI, 30-42) to 32 cm/s (95% CI, 27-37; P=0.001) in 12 native failing hearts at 1000 ms pacing cycle length (PCL). The percent APD prolongation is negatively correlated with baseline APD and positively correlated with PCL. Only 1 wedge had M-cell islands. The percentages of APD prolongation in the last 4 hearts at 2000 ms PCL after apamin, chromanol, and E4031 were 9.1% (95% CI, 3.9-14.2), 17.3% (95% CI, 3.1-31.5), and 35.9% (95% CI, 15.7-56.1), respectively. Immunohistochemical staining of subtype 2 of SK protein showed increased expression in intercalated discs of myocytes. CONCLUSIONS SK current is important in the transmural repolarization in failing human ventricles. The magnitude of IKAS is positively correlated with the PCL, but negatively correlated with APD when PCL is fixed. There is abundant subtype 2 of SK protein in the intercalated discs of myocytes.
منابع مشابه
Early afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve
AIMS Acute ischemia is a major cause of sudden arrhythmic death, further promoted by potassium current blockers. Macro-reentry around the ischemic region and early afterdepolarizations (EADs) caused by electrotonic current have been suggested as potential mechanisms in animal and isolated cell studies. However, ventricular and human-specific arrhythmia mechanisms and their modulation by repolar...
متن کاملSmall‐Conductance Calcium‐Activated Potassium Current in Normal Rabbit Cardiac Purkinje Cells
BACKGROUND Purkinje cells (PCs) are important in cardiac arrhythmogenesis. Whether small-conductance calcium-activated potassium (SK) channels are present in PCs remains unclear. We tested the hypotheses that subtype 2 SK (SK2) channel proteins and apamin-sensitive SK currents are abundantly present in PCs. METHODS AND RESULTS We studied 25 normal rabbit ventricles, including 13 patch-clamp s...
متن کاملSmall-conductance calcium-activated potassium channel and recurrent ventricular fibrillation in failing rabbit ventricles.
RATIONALE Fibrillation/defibrillation episodes in failing ventricles may be followed by action potential duration (APD) shortening and recurrent spontaneous ventricular fibrillation (SVF). OBJECTIVE We hypothesized that activation of apamin-sensitive small-conductance Ca(2+)-activated K(+) (SK) channels is responsible for the postshock APD shortening in failing ventricles. METHODS AND RESUL...
متن کاملP13: Potassium Channels and Long-Term Potentiation Formation
Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...
متن کاملApamin induces early afterdepolarizations and torsades de pointes ventricular arrhythmia from failing rabbit ventricles exhibiting secondary rises in intracellular calcium.
BACKGROUND A secondary rise of intracellular Ca(2+) (Cai) and an upregulation of apamin-sensitive K(+) current (I(KAS)) are characteristic findings of failing ventricular myocytes. We hypothesize that apamin, a specific I(KAS) blocker, may induce torsades de pointes (TdP) ventricular arrhythmia from failing ventricles exhibiting secondary rises of Cai. OBJECTIVE To test the hypothesis that sm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation. Arrhythmia and electrophysiology
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2015